Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Rev Proteomics ; 18(11): 949-975, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34791964

RESUMO

INTRODUCTION: Lysine acetylation is a reversible post-translational modification (PTM) regulated through the action of specific types of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (HDACs), in addition to bromodomains, which are a group of conserved domains which identify acetylated lysine residues, several of the players in the process of protein acetylation, including enzymes and bromodomain-containing proteins, have been related to the progression of several diseases. The combination of high-resolution mass spectrometry-based proteomics, and immunoprecipitation to enrich acetylated peptides has contributed in recent years to expand the knowledge about this PTM described initially in histones and nuclear proteins, and is currently reported in more than 5000 human proteins, that are regulated by this PTM. AREAS COVERED: This review presents an overview of the main participant elements, the scenario in the development of protein lysine acetylation, and its role in different human pathologies. EXPERT OPINION: Acetylation targets are practically all cellular processes in eukaryotes and prokaryotes organisms. Consequently, this modification has been linked to many pathologies like cancer, viral infection, obesity, diabetes, cardiovascular, and nervous system-associated diseases, to mention a few relevant examples. Accordingly, some intermediate mediators in the acetylation process have been projected as therapeutic targets.


Assuntos
Lisina , Proteômica , Acetilação , Histonas , Humanos , Lisina/metabolismo , Processamento de Proteína Pós-Traducional
2.
J Biol Chem ; 292(44): 18129-18144, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28893905

RESUMO

Lysine acetylation is a widespread posttranslational modification affecting many biological pathways. Recent studies indicate that acetylated lysine residues mainly exhibit low acetylation occupancy, but challenges in sample preparation and analysis make it difficult to confidently assign these numbers, limiting understanding of their biological significance. Here, we tested three common sample preparation methods to determine their suitability for assessing acetylation stoichiometry in three human cell lines, identifying the acetylation occupancy in more than 1,300 proteins from each cell line. The stoichiometric analysis in combination with quantitative proteomics also enabled us to explore their functional roles. We found that higher abundance of the deacetylase sirtuin 1 (SIRT1) correlated with lower acetylation occupancy and lower levels of ribosomal proteins, including those involved in ribosome biogenesis and rRNA processing. Treatment with the SIRT1 inhibitor EX-527 confirmed SIRT1's role in the regulation of pre-rRNA synthesis and processing. Specifically, proteins involved in pre-rRNA transcription, including subunits of the polymerase I and SL1 complexes and the RNA polymerase I-specific transcription initiation factor RRN3, were up-regulated after SIRT1 inhibition. Moreover, many protein effectors and regulators of pre-rRNA processing needed for rRNA maturation were also up-regulated after EX-527 treatment with the outcome that pre-rRNA and 28S rRNA levels also increased. More generally, we found that SIRT1 inhibition down-regulates metabolic pathways, including glycolysis and pyruvate metabolism. Together, these results provide the largest data set thus far of lysine acetylation stoichiometry (available via ProteomeXchange with identifier PXD005903) and set the stage for further biological investigations of this central posttranslational modification.


Assuntos
Regulação da Expressão Gênica , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Sirtuína 1/metabolismo , Acetilação/efeitos dos fármacos , Métodos Analíticos de Preparação de Amostras , Carbazóis/farmacologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Cinética , Mapeamento de Peptídeos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteômica/métodos , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , RNA Ribossômico 28S/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...